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Coupled phase instability of a cellular pattern
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We have observed a localized structure and the spontaneous nucleation of topological defects in
an experiment on electrohydrodynamic convection. They are created by a phase instability via
the coupling between the oscillatory mode and the underlying cellular pattern. By measuring the
coefficients of the phase equations derived from coupled complex Ginzburg-Landau equations, we
have confirmed that the equations quantitatively describe the instability.

PACS number(s): 47.20.Ky, 05.45.+b, 47.65.+a

In many experimental systems driven out of equilib-
rium, such as Rayleigh-Bénard convection [1], directional
solidification [2], and Taylor-Couette flow [3], the uniform
state destabilizes into a spatially periodic pattern. The
transition to spatiotemporal chaos in these systems is
driven by secondary instabilities, which are responsible
for the loss of spatial coherence as well as for the ap-
pearance of temporal complexity. Coullet and Iooss have
predicted [4] that a remarkably rich variety of phenom-
ena can emerge if the secondary instability couples with
the underlying periodic pattern. However, this coupling
has not been shown to exist in any earlier experiments.

In this Rapid Communication, we studied that the
Hopf bifurcation of a periodic pattern in a convecting
nematic liquid crystal leads to wave localization [target
patterns, see Fig. 1(a)] and the spontaneous nucleation
of dislocations. We show that the instability originates
from the coupling between the oscillating mode and the
underlying periodic pattern. We have determined the in-
teractions based on coupled Ginzburg-Landau equations
satisfying the symmetry properties of our system and on
the derived coupled phase equations. We measure the co-
efficients of the phase equations and show that the equa-
tions quantitatively describe the instability.

Pattern formation by electrohydrodynamic (EHD)
convection [5] in nematic liquid crystals has been stud-
ied as a prototype for spatiotemporal instabilities and
chaos in large-aspect-ratio systems [6-9]. The advantage
of EHD convection, compared to other systems, such as
thermal convection, is that it has a short relaxation time
scale and a large aspect ratio. These properties are essen-
tial for studying the long-time behavior of spatiotemporal
chaos.

We used a nematic liquid crystal, 4-methoxybenzyli-
dene-4’-butylaniline (MBBA) doped with 0.01 wt. % of
tetra-n-butylammonium bromide to increase and control
the electrical conductivity. It was sandwiched between
two parallel glass plates covered with a transparent In,O3
electrode. The surface of the transparent electrodes was
coated with polyvinyl alcohol and rubbed to achieve a
uniform and unidirectional planar alignment of the ne-
matic directors along the %X direction. The size of the
cell was 2x2 cm? and its depth dp 50 um (aspect ratio
400 x 400). The temperature of the cell was regulated
to (25.00+ 0.01) °C. An ac voltage was applied between
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the two electrodes. Below the cutoff frequency of 900
Hz, due to the response time of the ions, the conduction
state lost stability to a convective pattern, the Williams
rolls. Further increasing the voltage, we observed a two-
dimensional periodic grid pattern. Our typical working
parameters were f = 600 Hz and V = 58.6 V. We ob-
served the convection pattern under a microscope using
a shadowgraph technique [10] with light polarized paral-
lel to the nematic director. The intensity of the visual-
ized image was measured with a charge coupled device
camera and digitized with a resolution of 512x480 pixels
and 256 grey levels. We used a complex demodulation
method [11] to measure the local lattice wave number.

We focused on the dynamics of the grid pattern. When
we crossed the boundary from a stationary state upward
in the phase diagram shown in Fig. 1(b), the grid pat-
tern underwent a Hopf bifurcation [12], oscillating in an
optical mode [13]. In the oscillating region we observed
a novel phenomenon [9, 12]; the oscillatory mode created
waves that were emitted from a self-organized center and
decayed outwards, defining a localized target pattern [see
Fig. 1(a)]. The underlying periodic pattern (lattice) was
locally expanded around the target’s center. The targets
have a life cycle, collapsing by the spontaneous nucleation
of topological defects, to create spatiotemporal chaos.

To understand these phenomena, Ginzburg-Landau
(GL) -type coupled equations based only on symmetry
considerations are proposed. Our experimental observa-
tion indicated that the lattice spacing in the %X direc-
tion is deformed due to the interaction with the oscil-
lations in the target, but spacing in the ¥ direction is
not [12], implying that the oscillatory mode couples to
the phase of the underlying periodic pattern only in the
% direction and not in the ¥ direction. Therefore we
assumed that a one-dimensional model can explain the
essential instability mechanism [14]. The basic periodic
pattern (in the stationary regime) has parity symmetry,
discrete translational symmetry, and time translational
invariance. Based on these symmetry arguments the only
possible normal forms for the complex coupled equations
are [4]

TaOtA = pA +€4(1 +ic1)d2A — (1 +ico)|AI2A
+€4 (&1 + 1€2) 0,9 A, (1)
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TeOrp = 3020 + £460,| A + i€ B(AD, A — AD,A), (2)

where all the coefficients are real. A represents the slowly
varying amplitude of the wave (i.e., the target) and ¢
is the phase associated with the deformation of the un-
derlying periodic pattern. 74 (74) and €4 (§p) are the
relaxation times and the coherence lengths of the wave
A (the phase ¢). Sakaguchi [15] predicted that the cou-
pled instability could create either stationary or growing
localized target patterns accompanied by lattice defor-
mation. Furthermore, if lattice deformation (expansion
or contraction) becomes large enough to exceed the Eck-
haus boundary of the basic periodic pattern, spontaneous
nucleation of defects is expected [12, 15].

Daviaud et al. [16] and Sakaguchi [15] derived coupled
phase equations from Egs. (1) and (2):

8y =Dy +Ek+N, (3)
Bk = Dydzk — B2 + N, (4)
where 1 is the phase of oscillatory mode A, k is the lo-

cal wave number shift in the % direction, k = 98¢/0z,
and N denotes nonlinear terms. The coefficients are
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FIG. 1. (a) Snapshot of the shadowgraphic image of a

target pattern created by the oscillation of an underlying two-
dimensional cellular structure (lattice). (b) Phase diagram of
the grid pattern as a function of the wave number and the
voltage for f = 600 Hz. Bullets denote the threshold for the
onset of oscillations. SG denotes the stationary grid pattern
and OG the oscillating grid pattern. Dashed lines denote the
Eckhaus boundary. Dotted-dashed line indicates the optimal
wave number.
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Dy = (E4/7A)1 + c1ca — (Taby/Ts€a)c2BE1], & =
£5(&2 — c261)/Ta, Dy = (€3/74)[1 + (Ea/€s)6€1], and
B = 2pB€a/Te.

The uniform state is linearly unstable when
B'¢'/DyDyg > 0. In this case, any small perturbation
in the phase 9 is amplified in k¥ and vice versa, leading
to a coupled phase instability.

‘We performed different experiments to test the valid-
ity of the theory for our system. We chose experimental
conditions where one term of the phase equations (diffu-
sion or coupling) prevails on the other. This allows us
to measure directly the values of the coefficients in the
phase equations.

The coupling coefficient in Eq. (3) controls the vari-
ation of wave frequency with lattice wave number (see
Fig. 2). We prepared a grid pattern with uniform initial
lattice wave number k¢. By a frequency-voltage jump [8]
to a state with a preferred wave number k°, we generated
oscillations of frequency shift w = 9;¢. The slope of the
linear fit (Fig. 2) gave £’ = (—0.48+£0.05)do /Ty, To being
the relaxation time of nematic director [17].

In order to determine the coefficient 8/, we measured
the isophase line 1(z) and the local lattice wave-number
shift k(z) (see Fig. 3). The curve ¢(x) was obtained
by measuring the position of a wave front emitted from
the center of a target. Since the oscillation period (of
order Tp) was 103 times faster than the growth rate of
k(z) (see inset of Fig. 4), the local lattice wave-number
shift k(x) was quasistatic during the measurement of each
isophase line. We measured the curvatures of the lattice
wave number 82k and of the oscillating phase 821 for a
growing target at each time step (At = 10 s), and found
that they were proportional, as shown in Fig. 4. We
checked that 9;k is constant during the whole measure-
ment (see inset in Fig. 4) and assumed that the nonlinear
terms are negligible in Eq. (4). Thus, the linear fit in
Fig. 4 gives the ratio of the two coefficients in Eq. (4):
Dy /B = (—2.43 £ 0.03)dy, giving (see the value of Dy
below) 8’ = (—0.017 = 0.002)do/Tp.

Let us consider the diffusion coefficients. We per-
formed two different experiments to measure the diffu-
sion coefficient of the lattice deformation, without waves,
D§ = &}/74, and with waves, Dy. For D}, we prepared
a pattern with a localized deformation: a target pattern
was the most natural candidate. By stepping the voltage
down to the stationary regime, we observed the relax-
ation of the lattice deformation without waves. At each
time step (At = 1 s), we measured the value of the mini-
mum wave number (the lattice constant is expanded in a
target pattern) k, and the width [ at the half height of the
peak. The product k! was constant over a wide range
(see the inset of Fig. 5), confirming that the undergoing
process is a pure diffusion. The linear fit of the variation
ofk, 2 with time ( see Fig. 5) gives the diffusion coefficient
without waves: Dg =¢€2 /74 = (4.2 £0.7) x 107243 /Ts.

We evaluated the diffusion constant with waves from
the data in Fig. 4. The extrapolation of the curve to the
origin (82¢ = 0) gives an estimate for the phase diffu-
sion constant with waves, Dy = (£3/74)[14(4/€4)661] =
4.9 x 1072d3/Tp. Comparing D) and Dy, we concluded
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FIG. 2. The frequency of the phase wave mode vs the
wave-number shift of the uniform grid pattern. The initial
state of the basic grid pattern was controlled and the initial
state of uniform k' was varied by a frequency jump. The
phase 1) of the wave is almost uniform in space. The Eckhaus
instability finally takes over when the initial imposed wave-
number shift is smaller than —1.2.

that the waves do not affect significantly the lattice dif-
fusion constant. The instability mechanism lies in the
coupling terms.

To estimate the wave diffusion constant D, we de-
signed a cell with two separated plane electrodes; by ap-
plying different voltages in each region, we induced os-
cillations in one electrode and a stationary pattern in
the other. We looked at the penetration of the wave
into the stationary pattern. The phase contour ¥ (z) was
parabolic and the wave-number shift & of the grid pattern
was negligible in the penetrated region. From the mea-
surement of the frequency and phase curvature relation
based on Eq. (3), we found Dy, ~ 0.71(d2/Tp). Detailed
explanations of the experimental setup will be published
elsewhere [18].
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FIG. 3. (a) Isophase line 9(z) of the wave near the center
of the target pattern. The solid curve indicates the best fit of
the tip by a parabola. (b) Local wave-number shift k(z).

(d%k /d3x) do®

FIG. 4. Variation of the curvature of the phase wave v
as a function of the curvature of the lattice wave number,
k. The data were taken at the center of a growing target
pattern. The linear slope gives the value of Dy/B. Inset:
temporal evolution of the wave number k at the center of the
target pattern.

We estimated the size of the nonlinear terms in Eq. (4)
by evaluating the left-hand side (lhs) and linear terms in
the rhs. They are about 10% of the value of the lin-
ear terms. Nonlinear terms in Eq. (3) give the devia-
tion between the measured phase contour ¥(z) and the
parabolic solution. Near the center of the target, where
we obtained the results shown in Figs. 4 and 5, the devi-
ation was as small as the measurement error.

Comparing the experimental results and predictions
(15], first, the instability condition 8’¢’ > 0 (for Dy, Dy >
0) is fulfilled, verifing our hypothesis that an amplifying
feedback mechanism between the waves and the underly-
ing lattice deformation creates the target pattern. In this
case, A’ < 0 and &' < 0, consistent with the observation
that, at the center of the target pattern, the oscillation
phase is advanced and the local wave number is smaller.
If B > 0 and ¢ > 0, the instability condition is satis-
fied, and the phase is also advanced, but the local wave
number is larger rather than smaller.

Second, the directly measured growth rate of the target
can be predicted by the considered phase equations. The
growth rate, calculated by substituting the curvatures of
k, ¢ and our derived coefficients into the rhs of Eq. (4) is
Bk/dt = (—1.2 £0.3) x 1073(1/doTo). The growth rate
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FIG.5. Variation of minimum lattice wave number (1/k2)
with time during a diffusion process after a jump in voltage.
Inset: time evolution of the product (kpl).
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directly measured from the slope of the inset in Fig. 4 is
(=1.3£0.1) x 1073(1/doTp), showing a good agreement.
Furthermore, the contours of k(z) and ¥(z) in Fig. 3 are
quite similar to those obtained by numerical simulations
and to the analytic solution obtained by Sakaguchi [15].

This agreement supports the theory and validates the
assumptions we have made for our measurements [14].
Nevertheless, for a further comparison between the ex-
periment and the theory, we need to know the effect of
the small nonlinear terms, such as (8,4)?, appearing in
Eq. (3) [15,16]. Studying the full amplitude equations,
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including nonlinear terms, should answer questions about
the localized solutions and the defect nucleation process,
and should lead to further experimental studies.

We are grateful to T. Kawagishi, S. Nasuno, and Y.
Sawada for help and stimulating discussions; to P. Coul-
let, Y. Kuramoto, H. Sakaguchi, and S. Sasa for impor-
tant insights; and to J. A. Glazier, A. Chiffaudel, J. M.
Flesselles, T. Mizuguchi, and W. Zimmerman for useful
comments. B. Janiaud thanks the Japanese Ministry of
Education for financial support.

* Permanent address: Laboratoire de Physique Statistique,
Ecole Normale Supérieure, 24 rue Lhomond, 75031 Paris
CEDEX 05, France.

[1] L. Gil, G. Balzer, P. Coullet, M. Dubois, and P. Berge,
Phys. Rev. Lett. 66, 3249 (1991).

[2] J. M Flesselles, A. J Simon, and A. Libchaber, Adv.
Phys. 40, 1 (1991).

[3] C. D. Andereck, S. S. Liu, and H. L. Swinney, J. Fluid
Mech. 164, 155 (1986).

(4] P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 (1990).

[5] See, e.g., E. Bodenschatz, W. Zimmermann, and L.
Krammer, J. Phys. (Paris) 49, 1875 (1988), and refer-
ences therein.

[6] S. Kai and K. Hirakawa, Prog. Theor. Phys. Suppl. 64,
212 (1978).

[7] A. Joets and R. Ribbota, J. Phys. (Paris) 47, 595 (1986).

[8] G. Goren, I. Procaccia, S. Rasenat, and V. Steinberg,
Phys. Rev. Lett. 63, 1237 (1989).

[9] S. Nasuno, M. Sano, and Y. Sawada, J. Phys. Soc. Jpn.
58, 1875 (1989).

[10] K. Kondo, M. Arakawa, A. Fukuda, and E. Kuze, Jpn.
J. Appl. Phys. 22, 394 (1983).

[11] P. Bloomfield, Fourier Analysis of Time Series: An In-
troduction (Wiley, New York, 1976).

[12] M. Sano, K. Sato, S. Nasuno, and H. Kokubo, Phys. Rev.
A 46, 3540 (1992); M. Sano, K. Sato, and B. Janiaud,
in Pattern Formation in Complex Dissipative Systems,
edited by S. Kai (World Scientific, Singapore, 1992), p.
286.

[13] The regular grid pattern Us and its oscillatory mode u
are well approximated by [12, 19]

U =Us(z,y) +u(z,y,t) =S cos(ksx + ¢z) cos(kyy + ¢y)
+ A cos(wt + ¥) sin(kzx + ¢ ) sin(2kyy + 26, ).

The oscillatory mode u creating the target pattern is the
second harmonic of the original grid pattern in the ¥ di-
rection, but has the same wavelength in the % direction.
This oscillatory mode satisfies the orthogonality condi-
tion [4] with respect to the translational modes 6Uy/0x
and OUy/8y. In this paper we consider the equations for
A, Y, and ¢ = ¢,.

[14] The target pattern looks like an ellipse because the ex-
pansion of the lattice in the % direction (deformation of
¢z ) is diffusing in the § direction. We observed that the
width of the target in the ¥ direction grows in time and
finally the target becomes one dimensional (plane wave)
when the target lasts long enough. This phenomenon and
elliptic target pattern can be reproduced by an extended
two-dimensional model simply by adding the term BZqﬁz,
i.e., diffusion of ¢, in the ¥ direction, to Eq. (2) or (4).
However, the essence of the instability mechanism lies in
the one-dimensional model.

[15] H. Sakaguchi, Prog. Theor. Phys. 87, 241 (1992); 87,
1049 (1992).

(16] F. Daviaud, J. Lega, P. Berge, P. Coullet, and M.
Dubois, Physica 55D, 287 (1992).

[17) We approximate the relaxation time Tp of the nematic
director by its value in zero electric field [5], Tp = Cd3,
where C' is determined by physical constants of MBBA.
We thus estimate Tp = 165 ms for the 50-um cell.

[18] H. Kokubo, M. Sano, B. Janiaud, and Y. Sawada (un-
published).

[19] S. Sasa, T. Mizuguchi, and M. Sano, Europhys. Lett. 19,
593 (1992).



T I
(b) ek ]
I
]
60f LA I
TI; [ LR :
5 58t ;i% -
£ ! s L] |
i I
;’ 56 ii ¢ SG 1
i
54F ! -
52 1 1
10 11 12 13
k do

FIG. 1. (a) Snapshot of the shadowgraphic image of a
target pattern created by the oscillation of an underlying two-
dimensional cellular structure (lattice). (b) Phase diagram of
the grid pattern as a function of the wave number and the
voltage for f = 600 Hz. Bullets denote the threshold for the
onset of oscillations. SG denotes the stationary grid pattern
and OG the oscillating grid pattern. Dashed lines denote the
Eckhaus boundary. Dotted-dashed line indicates the optimal
wave number.



